

CONFIDENCE INTERVALS:

Define parameter(s):

Proportions	Means
One sample: p = true proportion of	> One sample: μ = true mean of
\succ Two sample: p_1 = true proportion of	\blacktriangleright Two sample: μ_1 = true mean of
$p_2 = true proportion of$	$\mu_2 = \text{true mean of}$

Name the procedure:

Proportions	Means
One-sample z-interval for p	> One-sample t-interval for μ
→ Two-sample z-interval for $p_1 - p_2$	→ Two-sample t-interval for $\mu_1 - \mu_2$

Conditions:

Proportions	Means
Proportions> One sample:1) Random sample2) Independent if $n \le 10\%N$ 3) App Normal if $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$ > Two sample:1) Random samples or Assignment2) Independent if $n_1 \le 10\%N$ & $n_2 \le 10\%N$ 3) Approximately Normal if BOTH: $n_1\hat{p}_1 \ge 10$ and $n_1(1-\hat{p}_1) \ge 10$ & $n_2\hat{p}_2 \ge 10$ and $n_2(1-\hat{p}_2) \ge 10$	Means> One sample:1) Random sample2) Independent if $n \le 10\% N$ 3) Approximately Normal if:> Population Normal> $n \ge 30$ by CLT> Sample shows no strong skewness and outliers> Two sample:1) Random samples or Assignment2) Independent if $n_1 \le 10\% N & n_2 \le 10\% N$ 3) Approximately Normal if:> BOTH Populations Normal> BOTH $n_1 \ge 30 & n_2 \ge 30$ by CLT
	 ➢ BOTH n₁ ≥ 30 & n₂ ≥ 30 by CLT ➢ BOTH Samples shows no strong skewness and outliers

Interpret a confidence interval:

	Proportions		Means
\triangleright	One sample:	\checkmark	One sample:
	We are% confident that the interval		We are% confident that the interval
	from to captures the true		from to captures the true mean
	proportion of		of
\succ	Two sample:	\triangleright	Two sample:
	We are% confident that the interval		We are% confident that the interval
	from to captures the true		from to captures the true
	difference in proportions of		difference in means of

Interpret a confidence level: In the long run, ______% of intervals generated capture the population proportion/mean of...

SIGNIFICANCE TESTS:

Write hypotheses (including defining parameters):

Proportions	Means
> One sample:	➢ One sample:
$H_0: p =$	$H_0: \mu =$
H _a : $p \neq$, <, or >	Ha: $\mu \neq$, <, or >
p = true proportion of	$\mu = true mean of$
➤ Two sample:	➤ Two sample:
H ₀ : $p_1 = p_2$	H ₀ : $\mu_1 = \mu_2$
$H_a: \neq, <, or >$	H _a : $\mu \neq$, <, or >
$p_1 = true proportion of$	$\mu_1 = \text{true } \mathbf{mean} \text{ of} \dots$
$p_2 = true proportion of$	$\mu_2 = \text{true mean of}$

Name the procedure:

Proportions	Means
One-sample z-test for p	> One-sample t-test for μ
\succ Two-sample z-test for $p_1 - p_2$	→ Two-sample t-test for $\mu_1 - \mu_2$
	\blacktriangleright Paired t-test for μ_d

Conditions:

Proportions	Means
 ➢ One sample: 1) Random sample 2) Independent if n≤10%N 3) App Normal if np₀ ≥ 10 and n(1 – p₀) ≥ 10 ➢ Two sample: 1) Random samples or Assignment 2) Independent if n₁ ≤10%N & n₂ ≤10%N 3) Approximately Normal if BOTH: n₁ p̂_c ≥ 10 and n₁(1 – p̂_c) ≥ 10 & n₂ p̂_c ≥ 10 and n₂(1 – p̂_c) ≥ 10 	 > One sample: Random sample Independent if n≤10%N Approximately Normal if: Population Normal n≥30 by CLT Sample shows no strong skewness and outliers > Two sample: Random samples or Assignment Independent if n₁ ≤10%N & n₂ ≤10%N Approximately Normal if: BOTH Populations Normal BOTH Populations Normal BOTH n₁ ≥ 30 & n₂ ≥ 30 by CLT BOTH Samples shows no strong skewness and outliers

Use a test statistic to calculate a P-value:

Proportions	Means
Test statistic: z $2^{nd} \rightarrow VARS \rightarrow$ Iower: upper: $\mu:0$ $\sigma:1$ Probability $\sigma:1$ Probability z	Test statistic: t* $2^{nd} \rightarrow VARS \rightarrow$ $1_{ower:}$ upper: df: Paste * $df = n - 1$

Make a conclusion:

	Proportions		Means
>	One sample: p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true proportion of(H _a)	>	One sample: p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true mean of(H _a)
	p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true proportion of(H _a)		p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true mean of(H _a)
A	Two sample: p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true difference in proportions of(H _a)	A	Two sample: p-value $\leq \alpha$, reject H ₀ . We have convincing evidence that the true difference in means of(H _a)
	p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true difference in proportions of(H _a)		p-value > α , fail to reject H ₀ . We do not have convincing evidence that the true difference in means of(H _a)

Interpret a P-value: Assuming the H_0 (in context) is true, there is a <u>(*P-value*)</u> probability of getting a sample proportion/mean as extreme or more extreme than <u>(*sample proportion/mean*)</u> by chance alone.

Based on a confidence interval, do we have convincing evidence for a claim?

One sample:

- *Compare the claim to the interval. Is the value of the claim inside or outside the interval?
 - Example: claim: different than 14, interval (11, 13) → Because the value 14 is not a plausible value found within the confidence interval, we have convincing evidence that...is different than 14.
 - <u>Example</u>: claim: less than 12, interval $(11, 13) \rightarrow$ Because the value 12 is a plausible value found within the confidence interval, we do not have convincing evidence that...less than 12.
- ➤ Two sample:
 - Because the interval includes 0 as a plausible value for $p_1 p_2/\mu_1 \mu_2$, we do not have convincing evidence that...
 - Because the interval does not contain 0, we have convincing evidence that...

WHY do we CHECK Conditions?

- > Random:
 - Random sample: Generalize the result to the population from which the sample was selected.
 - **Random assignment:** Create two groups that are roughly equivalent to allow for a cause-and effect conclusion between the two groups.
- > 10% Condition: (Only used if sampling without replacement)
 - The sampling is without replacement and thus "dependent." With less than 10% of the population (n < 10% N), it creates an "essentially independent" environment and makes our standard error valid.
- Normal/Large Counts:
 - Guarantees that the sampling distribution will be approximately normal.
 - **Proportions:** $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$
 - *This allows us to use the normal approximation to estimate the p-value of the test.
 - Means: Population is normal, $n \ge 30$ by CLT, or sample shows no strong skewness and outliers
 - *This allows us to use a t distribution to estimate the p-value of the test.